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LElTER TO THE EDITOR 

Finite-size corrections and numerical calculations for long 
spin4 Heisenberg chains in the critical region 

F Woynarovicht and H-P Eckle 
Fachbereich Physik, Freie Universitat Berlin, Animallee 14, 1000 Berlin 33, West Germany 

Received 5 September 1986 

Abstract. Leading and next-to-leading-order finite-size corrections to the ground and first 
excited states are calculated for the spin-f anisotropic Heisenberg model in the critical 
region. The analytic results are compared to numerical data obtained for chains up to a 
length of N = 1024. It is found that, near the isotropic point, the asymptotic region where 
the results obtained for N-+m are applicable sets in at very large N values, and for 
obtaining good accuracy in fitting the numerical data one has to take into account several 
correction terms, even at large ( N  > 100) chain lengths. 

The widely used method of finite-size scaling for studying the properties of lower- 
dimensional statistical and quantum systems makes it desirable to have reliable methods 
for drawing conclusions about the behaviour of infinite systems from that of finite 
systems, i.e. to know more about the effects of finite size. Important steps in this 
direction have been made by Cardy (1984, 1986a, b) and by others (Blote et al 1986, 
Affleck 1986) observing that, in conformally invariant systems, the leading corrections 
to the bulk (infinite-size) results have a universal character and are connected to the 
critical behaviour of the system, namely (in the language of I D  quantum systems) for 
large size (L)  

2 T X , ,  7TC 
E,,-EO=- E o = A L - -  

L 6 L  

where E,, are the energy eigenvalues, x,, the scaling dimensions of the scaling operators 
of the theory and c is the conformal anomaly number. The next corrections are powers 
of 1/ L, or under certain circumstances, logarithmic in L. 

In the present letter we have studied both analytically and numerically the finite-size 
behaviour of the I D  anisotropic Heisenberg model 

N 

H = 1 (S:S:+, + SYSf+, + p S f S f + , )  (2) 
i= 1 

in the region 0 6 p = cos t9 s 1. Our main aim has been twofold: to check the above 
relations by independent analytic methods and, by performing numerical calculations 
for long chains, to find the range of sizes for which the above behaviour can be expected 
to set in. We based our study on the solution of the Bethe ansatz (BA) equations. 

In our analytic calculation we extended the method introduced by de Vega and 
Woynarovich (1985) to calculate the finite-size corrections in systems with zero mass 

t Permanent address: Central Research Institute for Physics, POB 49, H-1525 Budapest 114, Hungary. 
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gap. Simpler versions of this extension have already been applied to the present system 
(Avdeev and Dorfel 1985, Hamer 1985) to obtain the leading corrections. Our present 
treatment enables one to calculate systematically the higher ones as well. These 
higher-order corrections are needed to achieve reasonable accuracy in extrapolating 
small-size results to the infinite-size limit. This is clearly demonstrated by our numerical 
findings. We solved the BA equations for chain lengths increasing from N = 4 to N = 20 
in steps of two and from N = 32 always doubling the length up to N = 256, for the 
isotropic case even up to N = 1024. The results show that linear extrapolation in 1/ N 
based on the small lv data is misleading. The asymptotic region near to the isotropic 
point starts at very large N, and to reproduce the analytic results one needs to take into 
account several higher-order corrections. These numerical results also provide an 
explanation why the finite-size scaling method fails in reproducing correctly the phase 
boundary between the antiferromagnetic and X Y  phase of the model (as demonstrated 
by S6iyom and Ziman (1984)). 

As is well known the BA equations for the Heisenberg Hamiltonian (2) are 

Tu - 776 
2 

M 

p=1  
= 27rJU + c 2 tan-' cot e tanh -- 

The solution of these equations describes an eigenstate with an energy per site 

and spin 
S=iN-M.  

To obtain the lowest energy state at a given S one must choose for J ,  the set 

J, :  - f ( ;N-(S+l ) ) ;  - i ( i N - ( S + l ) ) + l ; .  . . i ( $ N - ( S + l ) ) .  (6) 
The ground and first excited states are determined by ( 6 )  with S = O  and S = 1, 
respectively. 

Introducing the density of roots for the finite system in the form 

zN(q)=- 2 t a n - ' ( c o t ~ e t a n h ~ ~ ) - - ~ C t t a n - ' [ c o t  O t a n h i ( ~ - ~ ~ ~ ) ]  (7)  

(8)  

1 

2 T  N P  

U N ( ? / )  =dZN(T)/d7 

Y 
leads to an equation for g N (  7): 

1 1 
= s cosh( 7 1 ~ / 2 e )  

exp(iwx) sinh w (  T - 219) 
F ( x )  =- dw 

and an energy per site 
cc 

E ! ? = J % - ~ - ~  E(T)SN(V) dv. 

Here E, is the energy per site for an infinite system in the ground state 

(9) 

tanh(wT) 
E ,  = -sin e lom (1 - 
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[ ( ii) ;7r(?2N 
sin 8 

e E ' N ' - E E , = ( 2 ~ ) 2 - e x p ( - A ~ / 2 e )  G+ -- -- -- 

+ O(exp(-3A~/28)) .  (21) 

The equations for the isotropic case can be obtained by the 8 + 0, T /  0 + v limit, which 
in the case of (18)-(21) means taking the O + O  limit after making the substitutions 
c ( A ) + c ~ ( A ~ ) / ~ ,  6 * ( ~ ) + 6 f ( ~ O )  and A + & &  

Equation (18) is analogous to that which arose when calculating the magnetisation 
for the model and can be treated in the same way (Griffiths 1964, Yang and Yang 
1966a, b). Here we do not give details of the solution, but rather our findings. 

In the first approximation, when we neglect the terms in (18) which are proportional 
to exp(2iwA), we get the already known result 

, s i n e  ( i - e / 7 r ) s 2  1 ( 8 N 2  -48Ni) E c ) -  E , = ( ~ T )  - e 
which in the 0 + 0 limit reproduces the energy per site for the isotropic chain. Normalis- 
ing the Hamiltonian appropriately (von Gehlen et a1 1986) (22) coincides with (1) 
with x1 = ;( 1 - e/ 7r) and c = 1. 

The next approximation is obtained when the terms proportional to exp(2iwA) are 
also taken into account with the 6 . ' ( - w )  of the first approximation in it. This generates 
corrections proportional to ( I /  N ) " ~ ~ / ( ~ - ~ )  and (1,' N2)m.  But corrections containing 
(1/N2)" are also generated by the neglected O(exp(-3Ar/28)) terms in the energy, 
by higher-order terms in (14) (and therefore in (15)) and by the first-order solution of 
(18) (by the poles of l/cosh(we) at w = i(2n + l ) r / 2 ,  n 2 1). Finally the corrections 
can be compiled into a double series 

In this double series all n and m 2 0 can be present except for n = m = 0. Which term 
is the dominant one depends on the value of 8. 

For 7r/2 > 0 > 57/3 the dominant term in the double series is the one with n = 0, 
m = 1, i.e. the next correction to (22) is - l /N4. The next largest term is the one with 
n = 1, m =o, i.e. - ( 1 / ~ ) ~ ~ / ( ~ - ~ ) + ~ .  

If 7r/3 > 8 > 0 the leading term of the double series is the one with n = 1 and m = 0 
), while for 8 > 7 r / 5  the next term is the one with n = 0 and m = 1 ( - ( 1 / ~ ) 4 8 / ( ~ - @ ) + 2  

(-l/N4), but for 8 < 7 r / 5  the term with n =2,  m = O  (-(1/N)88'("-8)+2) is the next 
largest one. 

As 8 + 0 at any fixed N an increasing number of terms of the type n # 0, m = 0 is 
to be taken into account, which in the f3 = 0 limit sums up to a logarithmic correction. 
Since the isotropic case, being the phase boundary between the critical and non-critical 
phases, is of special interest, we have studied it in more detail. By solving the 8 + 0 
limit of (18)-(21), we have found that 
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where O((ln(1n N))/(ln N)2'4'; l /( ln N)2'4') stands for the next two terms, which for 
N not large enough are not different in order of magnitude. We note here that the 
term (ln(1n N)) / ( ln  N)2(4) was not expected by Cardy (1986b). 

We have also solved the BA equations (3) numerically for the ground and first 
excited states. We have found the solution by iteration. The stability of the fixed point 
has been checked by starting the iteration from different initial 7, sets. This check 
proved also that the procedure does not accumulate numerical errors. In figure 1 we 
have plotted ( E % ) -  E m ) / \ ( E % ) -  Em)asl = ( E % ) -  E,)48N20/[sin O ( ~ T ) ~ ] .  Figure 2 
shows the scaled gap normalised to its theoretically expected value, i.e. ( E : ) -  
~ ! $ ) 8 ~ ~ e / [ ( i  - e/a) sin 0 ( 2 ~ ) ~ ] .  

It is apparent that the correction to the ground state approaches its asymptotic 
value much faster than the scaled gap does (2% and 10% at around N = 10, respec- 
tively). The linear approximation in 1 / N  based on the first few points, however, does 
not increase the accuracy in either case. The curves are power-like, but these powers, 
as long as O and N are small, do not coincide with the theoretically expected ones. 
That can be attributed to the effect of various higher-order corrections (Privman and 
Fisher 1983). Assuming the power law behaviour 

1 + a(  1/ N)" and 1 + b( l/N)P (26) 

-1.00( 
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Figure 1. Corrections to the ground-state energy per site obtained numerically and nor- 
malised to the expected asymptotic values, i.e. ( E : )  - E,)( T* sin @/ 12@N2)-' plotted 
against 1/N. The individual curves are labelled by the value of e/n. 
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Figure 2. The scaled gap normalised to the theoretically expected N+oo value, i.e. 
(.Eg)- E $ ) ) ( T  sin B ( T -  8 ) / 2 B N 2 ) - '  plotted against 1/ N. The individual curves are 
labelled by the value of e /  T. 

for the curves of figures 1 and 2, respectively, table 1 lists the cy and /3 exponents 
(obtained by graphical methods) best fitting the different regions of these curves. 

For the scaled gap in the isotropic point we have made several least sauare fits to 
find the region where the asymptotic form is already applicable. According to (25) 
the normalised scaled gap has the form 

ln(1n N )  1 + aj - 1 
Q O +  a, - 

In N +  a2 (In N)' (In 
with a,= 1 and a ,  = -f. In table 2 we give the results of three kinds of fits for the a 
coefficients. In the first we ignored the terms with a, and a 3 ,  whereas in the third we 

Table 1. 

N = 6-20 N = 64-256 Theory 

e l  a P a P a = P  

4 -  0.1 1 . 5  0.6 0.67 0.47 9 - 0.44 
0.2 1.63 0.97 1.18 1 1 .O 

12- 0.3 1.95 1.2 1.9 1.6 , - 1.71 
J 2 - 2 1.73 2.0 
0.4 2 2.1 2 2.03 2.0 
0.5 2 2 2 2 2.0 

1 
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Table 2. 

N a0 0 1  a2 a3 

6-20 1-4.19x -0.228 - - 
32-1024 1 - 1 . 3 0 ~  IO-’ -0.317 - - 
6-24 1 + 0.25 x lo-’ -0.435 - 0.234 

32-1024 1-0.49 x -0.396 - 0.183 
6-32 1-1.17 x lo-’ -0.303 -0.151 0.131 

32-1024 1-1.62X lo-’ -0.461 0.154 0.176 
128- 1024 1-2.99 x 1 0 - ~  -0.490 0.235 0.161 

took all of them. The second fit, in which the a, term is omitted, is to demonstrate 
that involving the (In(ln N))/(ln N)’ term improves the accuracy for large N. Strangely 
enough, the small N data can be fitted best when the third term is omitted. This, 
however, could be an accident, since fitting the same curve to the large N data 
reproduces the theoretically expected a, and a, with less accuracy. With the large N 
data the fits get better and better involving more and more terms and the four-parameter 
fits are actually very accurate. 

When studying a system by direct diagonalisation of the Hamiltonian, usually only 
chains up to N = 2 0  can be treated. In Monte Carlo simulations this upper limit in 
size can be raised up to about 30-40. That makes it especially important to know what 
kind of behaviour is expected for short chains. Our calculations show (tables 1 and 
2) that for these chain lengths the behaviour of different quantities cannot be described 
accurately just by the leading correction terms; to achieve numerical accuracy a larger 
number of corrections is needed. This implies that fitting the numerical data to some 
simple curves and extrapolating by them can be misleading and naive scaling procedures 
can give the wrong results. A prime example of this is the present model, as was 
pointed out by S6lyom and Ziman (1984): the naive scaling procedure shows that the 
‘critical anisotropy’ is around p = 0.5. Our results provide an explanation for this. 
Figure 2 shows that the correction to the scaled gap changes sign around p = 0.5. Thus 
the 1/ N behaviour for the gap could be seen here already at small N. That the scaled 
gap would not blow up for 1 5  p 2 0.5, but would saturate in all the region 1 2  p 2 -1, 
could not be seen from the small N data. In the case of the present model we know 
from exact results that the true phase boundary point is at p = 1 ,  but in the case of 
models where not enough analytic results are available, similar finite-size behaviour 
can lead to the wrong conclusions. The difficulties are greatly enhanced by the fact 
that near to the end of the critical region the scaled gap terminates with infinite slope, 
and to locate the phase boundary point correctly one needs to study long chains, and 
in the extrapolation one needs to take into account several correction terms. 

We would like to thank Professor I Peschel for many inspiring discussions. We also 
benefited from discussions with Professor K-D Schotte and Dr T Truong. This research 
has been supported by DFG under contract Scho 158/7-2. 
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